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ABSTRACT

The Incompressible flow inside a porous cylindrical

tube having steady radial Inflow and rotating about its

axis In a sinusoidal manner is obtained through solution

of the complete Navier-Stokes equations. The nature of the

tangential velocity profiles that result and the magnitudes

of the mean pressure drop and the amplitude of the pressure

fluctuations that are Induced by the tangential velocities

are discussed in some detail.

I



TABLE OF CONTENTS

1. Introduction 1

2. Basic Equations 3

3. Velocity Distributions 6

4. Pressure Distributions 7

5. Discussion of Results 10

References



I
1

1. Introduction

In reference I (hereafter referred to as Part I)

we considered the behavior of a class of three-dimensional

steady solutions of the Navier-Stokes equations. The

flows considered were those such that, in a cylindrical

coordinate system (r, 0, z), the radial, tangential, and

axial velocity distributions were of the form

u - u(r)

v - v(r)

w - z9(r)

while the pressure distribution was of the form

p a c z 2 + pl(r) + P2 (r)

In the above expression for the pressure one may
Identify the term clz2 with the pressure necessary

sustain the axial velocities, the term pl(r) with the

pressures necessary to sustain the radial motion, and the

term p2 (r) with the pressures necessary to sustain the
tangential velocities.

This special class of steady solutions of the Navier-

Stokes equations is such that the equations for the radial

and axial components of velocity are decoupled from the
equations governing the tangential velocity distribution

and the distribution of pressure. Because of this decoupling

of the equations, one finds that for very little additional

labor one can obtain the behavior of a simple class of

unsteady solutions of the Navier-Stokes equations; namely,

solutions of the form
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u - u(r)

v - v(r, t)

w = z;(r)

p I clz2 + p,(r) + p3 (r, t)

We see from the above expression for the pressure that

the pressures necessary to sustain the axial and radial

velocities are identical to those of the steady flows, as

might be expected, and only the pressure necessary to

sustain the tangential velocities P 3 (r, t) becomes

dependent on both position and time.

As in Part I of this report, these flows may be

visualized as the flow inside a cylindrical porous tube

which is subject to a rotation about its axis which Is

some arbitrary function of time.

In what follows, we will report in some detail the
behavior of these solutions when the porous tube is
subjected to a sinusoidal oscillation about its axis.
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2. Basic Equations

The basic equations governing the fluid motions that

we wish to discuss (see Part I, Section 2) are

(2.1)
r dr

dr r a 4r 7ru

(2.2) dr + -_ + v z d dQr\drj

We note that Equations (2.2) and (C.4) which govern the

radial and axial velocities and the boundary conditions to

be applied to these equations, namely u(O) - 0, u(R) - U,
7'(0) = 0, and i(R) a 0, are identical to those discussed

in detail in Part I. The radial and axial components of the

flow are therefore identical to those of the steady flows

of Part I.

We now introduce the non-dimensional variables

(2.5) x _ (r/R) 2

(2.6) r= St/R

(2.7) f(x) - -2ru/RS

(2.8) h(x, r) - rv/RV

where S and V are velocities and R a length that will
be defined later. In terms of these new variables, Equation

(2.3) becomes

(2.9) xhxx + nfh, a nh
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where the subscripts indicate differentiation with respect
to the variables x and T and the parameter n - RS/4v

is a Reynolds number.

Now let R be the internal radius of a porous cylinder
oscillating in such a manner that

(2.10) v(R, t) = V cos a•t

Applying this boundary condition to h(x, r) gives us

(2.11) h(l, T) = cos nr

where fn = Rc'/S. We also require that the tangential
velocity vanish at r - 0, so that we have

(2.12) h(0, T) - 0

If we write

(2.13) h - R.P.{A(x)e"int} . x cos Qt + w. sn nt

where A(x) = X(x) + i4(x), then Equation (2.9) becomes

(2.14) xA" + nfA' = -inCA

The boundary conditions (2.11) and (2.12) are

(2.15) A(O) = 0 A(M) - 1

Let O(x) - a(x) + ip(x) be a solution of Equation (2.14)
when 0(0) - 0 and 0'(0) 1 1. Then the solution we

require is

A(x) O- 0(l)
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or writing 0(l) - al + i1 we have

(2.16) - I

(2.17) X(x) = 1 1
a1 1

where a(x) and O(x) are solutions of

(2.18) xa" + nfa' -nfl

subject to c(O) = 0 and a:(O) = 1 and

(2.19) xO" + nfP' - -nOa

subject to P(O) 0 and 0'(O) = 0.

In order to ure the results presented in this report

it is necessary to specify the characteristic velocity S.

As is discussed in Part I (p. 38), the characteristic

velocity S is the numerical value of the axial velocity

at r a 0 and z = R. The exact value of S in relation

to the radial inflow or outflow at r = R is obtained from

the steady solution for the radial and axial velocities.

Figure 2.1 is a plot of the ratio of n/IUR/vJ = S/4IUI

as a function of IUR/vi for the simple families of one-

celled flows obtained from the studies reported in Part I.

As is indicated in this figure, one-celled flows under

conditions of outward radial flow exist for only a limited

range of radial Reynolds number (for a more extended dis-

cussion see Part I). For this reason, we shall limit the

computations and discussion to the case of radial inflows.
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do- outward radial flow

4-

3

Fig. 2.1 Relationship between the characteristic velocity
S and the numerical value of the radial velocity
U into a porous cylinder of radius R as a function

of the Reynolds number UR/V.
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3. Velocity Distributions

An analog computing machine was used to solve

Equations (2.18) and (2.19) and thus determine the functions

X(x) and i±(x) which represent the tangential velocity

distribution, for a range of both the frequency parameter

n and the Reynolds number n. In making these computation~s

the radial velocity function f(x) was generated by

simultaneous solution of the appropriate equation for f

subject to the proper boundary conditions (Equations

(2.2.6), (2.2.8), (2.2.9), and (2.2.10) of Part I). Typical
tangential velocity profiles at an instant in time and

envelopes of the velocity profiles for all times are shown

in Figures 3.1, 3.2, 3.3, and 3.4 with the Reynolds number

n as a parameter for four values of the frequency parameter
(0 = 0, 0.3, 1.0, and 3.0 respectively). In Figure 3.5

the envelopes of the velocity profiles are shown for the

particular Rey'nolds number n - 10 with 0 as a parameter.
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Fig. 3.3 Tangential velocity profiles 1 .0.
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Fig. 3.4 Tangential velocity profiles .11 - 3.0.
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Fig. 3.5. EnvelQes of the velocity profiles for
n - lawith A as a parameter.
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4. Pressure Distributions

As pointed out in the introduction, the pressure

distributions for the flows under discussion ame of the
7"i form

+-- ((4.1) p - clZ2 + p,(r) + p3 (r, t)

We my show this In the following manner. From Equation

(2.2) we note, since u and v are functions of r
alone, that a•p/r&-z . 0. Differentiating Equation (2.4)

f with respect to r gives

(,4.2) b2--+ ; _.-
P -' r I

From this equation we see that
dw -2 consdw-

(4.3) u- -=con. sdtant
IF+w r i d

or

(14.14) C " 1c

and

(4.5) p c z2 + *(r, t)

Since in what follows we are primarily interested in
the effects of the tangential motions on the pressure we
shall, In view of Equation (4.5), define

(4.6) jr(x, 1) -(x,,) 0(1.z.r)

"n ap

In addition we define
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, (4.8) 712(x) . d

(41.9) ,r22 W - ,f -ft

-. (1(.10) V 3 (x) -- x[r2(,)

I Substitution of Equations (4.6) through (4.11) into
Equation (2.2) yields

S• - y 2 (. 11os2fr+2w , sin Ch 005 fot+7 22 sIl 2nT. )+ S2 (, 3+74)

. 2[c,,, -. 22)cos 2fl + 2 si,.,n 20T]

+ •-P(w + Tr22) + S2(T3 + 74)

(41.12)

In this equation, the term 82(T3 + w4) represents that
part of the pressure required to sustain the radial motion,
the term 832w3 representing the pressure due to Inviseld
effects and the term 32r4 representing the pressure due
to viscous effects. The remaining terms on the right-hand
side of Equation (4.12) represent the pressure required
to sustain the tangential velocities. There are two effectest
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a mean pressure difference

(4-.13) A+

and a fluctuation In pressure at twice the frequency of the
oscillation of the porous boundary which has an amplitude

jpV2  - (rll " 22)+ 41

Figures 4.1 and 4.2 are plots of these two quantities

evaluated at r a x - 0 as obtained from the analog

solutions for X and KI discussed In Section 3 for the
Reynolds number range 0 < n 1 55 and for values of the

frequency parameter equal to 0, 0.3, 1.0, and 3.0. For
purposes of comparison, there is also plotted in Figures
4.1 and 4.2, the mean pressure drop and amplitude of the

pressure fluctuation (which In the limiting case -+ 0
Is equal to the mean pressure drop) obtained from a form of

Burgers' analytical solution (Reference 2) for the steady
(n - 0) tanWential motion which is valid for large n,

namely

(4.15) v- , -nV VT 1 *-

If Equation (4.15) Is used to obtain Ap, and I-apt1m
for n 4 0, there results

- ,•P 4 1 (n))l)
JpV2 Jp2 2 2
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Fig. 4.1 Mean pressure drop in an oscillating vortex tube
as a function of Reynolds number for various non-
dimensional oscillatory frequencies il of the
vortex tube.
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Fig. 4.2 Amplitude of the pressure fluctuation in an
oscillating vortex tube as a function of Reynolds
number for various non-dimensional frequencies T
of the vortex tube. The non-dimensional frequency
of the pressure fluctuation is 211.
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5. Discussion of Results

Tt In convenient to start the discussion of the

results Just presented with an analysis of Figures 4.1 and

14.2. We note that for n 40, &p,(O)/ipV2 , _0.5 and

IApt(O)Ie/ApV". -0.5. "is is easily shown to be true
because, in the limit of zero Reynolds number or infinite

viscosity, the fluid within the vortex tube turns as a
solid. Thus as n 4 0

(5.1) v -. )

and, from Equation (2.2), that portion of p that is due
to the tangential velocity Is then obtained from an Integra-

tion of

2
(52)dr r

Substituting Equation (5.1) Into (5.2) and integrating
yields

(5.3) p(o) - p(R) a- p[v(R) ]2

Since we have chosen v(R) - V cos t we have

(5.4) p(O) - p(R) -- _ pV2 cos 20t

or

P(O) -D(R m--(l + coo 2wt)

Thus for n 4 0 the mean part of the non-dimensional

pressure difference is -0.5 and the amplitude of the

non-d•mensional pressure fluctuation Is 0.5. The
frequency of the pressure fluctuation Is twice the frequency

of oscillation of the boundary.

Whether or not the mean pressure drop and the amplitude

of the pressure fluctuations become larger numerically as

the Reynolds number n is Increased depends on the frequency
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parameter 0. For frequency parameters smaller than unity,
the general trend is for the pressure difference and ampli-
tude to increase numerically as n Increases. As 11

becomes larger than unity, the tendency is for the mean

pressure differences and amplitudes to at first decrease
numerically as n becomes larger than unity and then
finally increase at some Reynolds number. The Reynolds

number at which the pressure fluctuations start to increase

is a function of 0. The larger 11 becomes, the larger is
the range of n above unity for which the mean pressure
differences and the amplitudes of the pressure fluctuations

du& to the oscillating boundary are of small magnitude.
Eventually, for an incompressible fluid, all curves such

as those shown In Figures 4.1 and 4.2 must turn upwards
because, given any finite frequency no matter how high, one
can always choose a Reynolds number high enough so that the

shears developed between successive maxima of the velocity

distribution curves become negligible. When this condition

exists, the fluid introduced through the porous boundary

is able to maintain to some degree its initial angular
momentum with the result that high tangential velocities are

carried toward the axis. In an incompressible medium these

high tangential velocities cause pressure fluctuations

that are transmitted instantaneously to the boundaries of
the flow. It appears from what has been said above and
from the behavior of the solutions which have been obtained,

that for all finite frequencies the mean pressure difference

and the amplitude of the pressure fluctuations become
proportional to n as n -a u, as has been discussed for

the case 0 a 0 in Section 4.
The reason for the initial drop In the numerical

values of &Pm(O) and IApf(O)Imax as n increases for

frequency parameters greater the unity can best be explained

as follows. At low Reynolds numbers (n << 1), the viscosity
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of the fluid is so high that reasonably large tangential
f• velocities are maintained all the way to the center of the

vortex tube by strong viscous action. As the viscosity is
decreased the fluid toward the center of the tube no longer
feels so strongly the effect of the surrounding cylinder at
r - R. However, the viscosity is such that the entering
fluid can not retain Its Initial angular velocity. The
result is that the velocities near the center of the tube
are not as large as they are for n - 0 as may be seen
from the tangential velocity envelope for 0 a 3.0 and
n - 10 shown in Figure 3.5. It should be obvious, for a
fixed Reynolds number n, that the velocity profiles and
their envelopes should become somewhat similar to those In
the vicinity of an oscillating flat plate (see Reference 3)

as ins increased to larger and larger values.
The reason for the slight discrepancy between the

behavior of the mean pressure drop and the amplitude of the
pressure fluctuations obtained from the analog computations
and the analytical results obtained from Burgers' solution
for n - 0 was a first thought to be computational Inaccuracy.
After this possibility had been checked and the computational
Inaccuracies found to be far less than the amount of the
discrepancy, it was realized that the discrepancy is due to
the different radial velocity profiles for the two cases.
In the case of burger's solution, the radial velocity Is of
the form u/u(R) - v, while for the cases Investigated In
this report, the appropriate limiting form of the radial
velocity distribution as n -I * is

U-7 ~sin (wx

(see Part I, page 64). It Is this difference in radial
velocity distributions that is responsible for the diffeoren-
ces In the two curves for n m 0 and n - a in Figures 4.1
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and 4.2.
It is interesting to note that for the particular

case of flows for which the radial velocity at r a R is
proportional to the tangential velocity at r - R, the
pressure fluctuations in the flow will vary as V3 for
high enough Reynolds number since, in this case, the
Reynolds number n is proportional to V and, for high
enough Reynolds number for a fixed frequency,
1Apf(0)1mX/*pV2 becomes proportional to n.
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